Machine Learning Glossary for Biodiversity Monitoring

This glossary provides functional definitions of machine learning terms commonly used in biodiversity monitoring. We've included Spanish translations where they exist, but some technical terms are used in both languages. These definitions aim to be practical and accessible, focusing on how terms are used in the context of ecological research and conservation, rather than providing formal technical definitions. This living document will evolve as our understanding and use of these terms develops within our community.

Este glosario proporciona definiciones funcionales de términos de aprendizaje automático comúnmente utilizados en el monitoreo de biodiversidad. Hemos incluido traducciones al español donde existen, aunque algunos términos técnicos se utilizan en ambos idiomas. Estas definiciones pretenden ser prácticas y accesibles, centrándose en cómo se utilizan los términos en el contexto de la investigación ecológica y la conservación, en lugar de proporcionar definiciones técnicas formales. Este documento vivo evolucionará a medida que nuestra comprensión y uso de estos términos se desarrolle dentro de nuestra comunidad.

CORE MACHINE LEARNING CONCEPTS CONCEPTOS BÁSICOS
Machine Learning Aprendizaje Automático Technology allowing computers to learn patterns from data without explicit programming
Neural Network Red Neuronal An organization of learning functions with non-linear connections
Deep Learning Aprendizaje Profundo A machine learning technique that uses multiple neural network layers
Training Entrenamiento Process of teaching a model to make predictions using example data
Evaluation evaluación Process for measuring a models performance and skill
Inference Inferencia Process for generating predictions on new data
Hyperparameters Hiperparámetros Settings controlling the training and inference process such as learning rate, batch size
Learning Rate Tasa de Aprendizaje Controls how much the model changes in response to errors during training
Loss Function Función de Pérdida Measures how well predictions match actual data; training aims to minimize this
ADDITIONAL ML TERMINOLOGY TERMINOLOGÍA ADICIONAL
Generalization Generalización Model's ability to perform well on new, unseen data
Feature Característica Individual measurable property or attribute of the observed data
Batch Size Tamaño de Lote Number of training examples used in one iteration of model training
Epoch Época One complete pass through the entire training dataset
COMPUTER VISION BASICS CONCEPTOS DE VISIÓN
Computer Vision Visión por Computadora Technology enabling computers to interpret visual information
Image Recognition Reconocimiento de Imágenes Ability to identify objects, people, or scenes in digital images
Object Detection Detección de Objetos Technology identifying and locating specific objects within images
Image Classification Clasificación de Imágenes Process of categorizing images into predefined classes
Pattern Recognition Reconocimiento de Patrones Automated recognition of patterns and regularities in data
PERFORMANCE METRICS MÉTRICAS DE RENDIMIENTO
Precision Precisión Proportion of positive identifications that were actually correct
Recall Exhaustividad Proportion of actual positives that were correctly identified
Accuracy Exactitud Overall proportion of correct predictions
Processing Speed Velocidad de Procesamiento How quickly an AI system can analyze images or video
Cross-Validation Validación Cruzada Technique to assess model generalization to independent datasets
F1-Score Puntuación F1 Harmonic mean of precision and recall for model evaluation
DATA ANNOTATION & LABELING ANOTACIÓN Y ETIQUETADO
Data Annotation Anotación de Datos Process of labeling data to provide ground truth for supervised learning
Bounding Box Cuadro Delimitador Rectangle drawn around an object to mark its location and size
Polygon Annotation Anotación de Polígonos Marking objects with irregular shapes using multi-point boundaries
Semantic Annotation Anotación Semántica Labeling each pixel in an image with a corresponding class
Instance Annotation Anotación de Instancias Identifying individual object instances, even within the same class
Keypoint Annotation Anotación de Puntos Clave Marking specific points of interest, often for pose estimation
Ground Truth Verdad Fundamental Accurate reference data used to train and evaluate ML models
COMMON USER TERMINOLOGY TERMINOLOGÍA COMÚN
Algorithm Algoritmo Set of rules followed by a computer to perform a task
Model Modelo Representation of what a ML system has learned from training
Training Data Datos de Entrenamiento Examples used to teach a machine learning system
Testing Data Datos de Prueba Separate examples used to evaluate model performance
Confidence Score Puntuación de Confianza Measure of how certain an AI system is about its prediction
False Positive Falso Positivo System incorrectly identifies something that isn't present
False Negative Falso Negativo System fails to identify something that is present
Domain Adaptation Adaptación de Dominio Applying a model trained on one data type to a related type
PRIVACY & ETHICS PRIVACIDAD Y ÉTICA
Data Privacy Privacidad de Datos Protection of personal information in ML systems
Bias Sesgo Unfair preference in AI systems, often reflecting training data bias
Consent Consentimiento Permission from individuals to use their data for AI training
Transparency Transparencia Openness about how AI systems work and make decisions